The Microscope.com Blog

Affordable Microscopes for Everyday Use


May 06, 2013

IBM and Atom Films: Modern Microscopy in Action

IBM and Atom Films: Modern Microscopy in Action

In early May 2013, worldwide news outlets reported on a brand new short film on Youtube that had “gone viral” in terms of popularity. But this wasn’t a skateboarding dog or a grumpy cat; the one-and-a-half minute video, “A Boy and His Atom,” was touted as the smallest movie ever made. IBM researchers created the stop-motion film by manipulating individual atoms into place using a scanning tunneling microscope. Guinness World Records officially verified that it was the world’s smallest stop-motion film. It’s a vibrant and exciting example of the work that’s currently being done using applied microscopy.

“A Boy and his Atom” was a side project in the IBM laboratories; the main goal was to experiment with atomic-level magnetism for digital memory storage. Since the development of the first hard drive in the 1950s, processor technology has sped up at an exponential rate, but over that timeline all digital hard drives have worked in essentially the same way: they break information down into a stream of bits – a binary unit that can only show either one or zero – and program that long binary code into the microprocessors. The coding is usually done using electromagnetic currents running to a series of tiny “switches”, each of which will either flip to one or stay at zero.

Today’s modern microprocessors use approximately 1 million atoms to store one single bit of information; that’s every one or zero. While it seems like a lot of atoms, they can still fit quite easily into a 32 Gigabyte smartphone – that’s 200 trillion bits! However, IBM has been working to reduce the size of the bit even more. Through scanning tunneling microscopy, the research team recently discovered that they could store one bit of information in just 12 atoms of carbon monoxide magnetically arranged on a small copper plate. Atomic-scale magnetic memory means that we may someday be able to store unbelievable amounts of data into a very small hard disk.

“A Boy and his Atom” was a demonstration of IBM’s ability to control and move single atoms into recognizable shapes. They do this by using an incredibly powerful microscope, which magnifies the atoms about 100 million times. It’s far beyond the resolving capability of light microscopes, or even electron-based beams. The scanning tunneling microscope, or STM, was originally developed in 1986, and it relies on a phenomenon called quantum tunneling, in which atoms hover above the surface of a solid object in a “cloud”. When another surface comes close to the original one, their clouds overlap and can affect the positioning of the atoms. The STM’s tip is refined down to one single atom; it gets so close to the target atom that they chemically interact in a predictable way, allowing the STM to drag the atom across a surface. According to the scientists, the atoms actually make a distinct sound when being moved, which resembles a record scratch! The researchers used carbon monoxide atoms arranged on a copper 111 plate, which provided the best magnetic bonding. The scanning surface is cooled to about -230 Kelvin, so the atoms are not vibrating at a high speed. For the film, they built each frame out of atoms and took a photograph of the result, just like in traditional stop-motion animation.

“A Boy and His Atom” is a fascinating example of real microscopy and real results. The ability to move individual atoms around is an incredible leap forward for science, and the new 8-atom bit shows the potential that can result from this power, all done with a very powerful microscope and some innovative imagination.